Reg.No.:						
Reg.No.:						

VIVEKANANDHA COLLEGE OF ENGINEERING FOR WOMEN

[AUTONOMOUS INSTITUTION AFFILIATED TO ANNA UNIVERSITY, CHENNAI] Elayampalayam – 637 205, Tiruchengode, Namakkal Dt., Tamil Nadu.

Question Paper Code: 13002

B.E. / B.Tech. DEGREE END-SEMESTER EXAMINATIONS – MAY / JUNE 2024 Sixth Semester

Computer Science and Technology U19CT611 – FOUNDATIONS OF DATA SCIENCE (Regulation 2019)

Time: Three Hours

Maximum: 100 Marks

Answer ALL the questions

		1	
Knowledge Levels	K1 – Remembering	K3 – Applying	K5 - Evaluating
(KL)	K2 – Understanding	K4 – Analyzing	K6 - Creating

PART - A

			$(10 \times 2 = 20 \text{ Marks})$			
	Q.No.	Questions	Marks	KL	CO	
	1.	Define Data Science.	2	K1	CO1	
	2.	List out the data security issues.	2	K1	CO1	
	3.	List an overview of common errors in retrieving data and the cleaning solutions to be employed.	2	K2	CO2	
	4.	What is data discretization?	2	K2	CO2	
	5.	List out the use of heat map.	2	K2	CO3	
	6.	What is exploratory data analytics?	2	K2	CO3	
	7.	Define data sampling.	2	K2	CO4	
	8.	Mention the validation techniques in machine learning.	2	K2	CO4	
	9.	List the different types of plot() functions.	2	K2	CO5	
	10.	Write the significance of matrix plots?	2	K2	CO5	
		PART – B				
			$(5 \times 13 =$	= 65 N	(Iarks)	
	Q.No.	Questions	Marks	KL	CÓ	
	11. a)	Explain the various steps associated with data science process with suitable diagrams and example. (OR)	13	K2	CO1	
	b)	Explain in detail about applications of data science in various fields.	13	K1	CO1	

12.	a)	Elaborate in detail about the different facets of data with the 13 K2 CO2 challenges in their processing. (OR)			
	b)	Outline in detail about various steps in data preprocessing with 13 K1 CO2 suitable examples.	CO2		
13.	a)	i. What is mode? Can there be distributions with no mode 3 K2 CO3 (or) more than one mode?			
		ii. What is median? Outline the steps to find the median 10 K2 CO3 and find the median for the following scores; first, set of five scores 2, 8, 2, 7, 6 and second, set of six scores 3, 8, 9, 3, 1, 8 with steps. (OR)			
	b)	Calculate the correlation co-efficient for the heights 'in inches' 13 K2 CO3 of father' (x) and their son's (y) with the data presented below: x 66 68 68 70 71 72 72 y 68 70 69 72 72 72 74			
14.	a)	Explain in detail the K-means algorithm with suitable 13 K1 CO4 examples.			
	b)	i. Summarize in detail about various methods for 6 K1 CO4 evaluating clustering models.			
		ii. Explain in detail about the different types of data used 7 K1 CO4 in cluster analysis.	CO4		
15.	a)	Illustrate in detail about the methods in graphical analysis with 13 K1 CO5 suitable examples.			
	b)	(OR) Discuss in brief about the methods of displaying multivariate 13 K1 CO5 data.			
		PART – C			
Q.N	Jo	Questions $(1 \times 15 = 15 \text{ Marks})$ $\text{Marks} \text{KL} \text{CO}$			
16.		Consider the following dataset with one response variable y and 15 K2 CO4			
10.	<i>~)</i>	two predictor variables x_1 and x_2 .			
		Y 140 155 159 179 192 200 212 215			
		x_1 60 62 67 70 71 72 75 78			

Fit a multiple linear regression model to this dataset.

(OR)

b) Perform an exploratory data analysis for the following data with different types of plots. The dataset contains cases from a study that was conducted between 1958 and 1970 at the University of Chicago's billings hospital on the survival of patients who had undergone surgery for breast cancer.

K3

. 15

CO₃

Data Attributes:

Age of patient at the time of operation (numerical)

Patients' year of operation (year-1900, numerical)

Number of positive axillary nodes detected (numerical)

Survival status (class attribute) 1 = the patient survived 5 years (or) longer

2 = the patient died within 5 year.